for instance, the end-points in the first 2-ratio columns and the ratios between 0.450 and 0.480. Some light is thrown on these by the experiments of Venable and Smithey. The ratio 0.456 would correspond to a hydrolyzed product $ZrO(OH)_{2.2}ZrO(IO_3)_2$, or to a zirconyl iodate in which $1/_3$ of the molecules had undergone hydrolysis. Such a product was obtained by these investigators when the precipitation was made in cold, concentrated solutions and the precipitate was freed from the filtrate by suction without washing. The ratio 0.533 corresponds to a product $_{3}$ ZrO(OH)₂. $_{4}$ ZrO(IO₃)₂, in which 3 out of 7 molecules had been hydrolyzed. This was obtained when the precipitate was formed from dilute solutions and washed with a limited amount of water at room temperature. The ratio 0.914 corresponds in the same way to $2ZrO(OH)_2 ZrO(IO_3)_2$, in which 2 out of 3 molecules have been hydrolyzed. Here the precipitate was washed with hot water in increased amount. A ratio 1.218, corresponding to $_{3}$ ZrO(OH)₂.2ZrO(IO₃)₂, where 3 out of 4 molecules had been hydrolyzed, was obtained after prolonged washing with hot water.

Summary.

1. The hydrolysis of zirconyl sulfate and chloride has been examined both by relative conductivity and by a precipitation method. The temperatures were 0° and 20° , respectively. Three different dilutions were used and the effect of the time factor noted.

2. There appears to be an initial temperature adjustment on dissolving the salts. Afterwards there is a decrease in the resistance until after about 3 hours an equilibrium or period of very slow change is reached.

3. In the experiments with iodic acid there is also indication of an initial adjustment. The extent of the hydrolysis is indicated. The equilibrium or period of slow change is reached in 2 to 3 hours.

CHAPEL HILL, N. C.

[Contribution from the Kent Chemical Laboratory of the University of Chicago.]

SURFACE TENSION AND MOLECULAR ATTRACTION: ON THE ADHESIONAL WORK BETWEEN MERCURY AND ORGANIC LIQUIDS.¹

BY WILLIAM D. HARKINS AND E. H. GRAFTON. Received September 24, 1920.

Most of the papers on molecular attraction make use of one of the equations of state in order to calculate the internal pressure of pure substances in the liquid state. It is evident that such equations give a very uncertain basis for the determination of results which represent more

¹ Published in abstract in *Proc. Nat. Acad. Sci.*, 5, 569-73 (1919). For similar work with water and organic liquids see Hardy, *Proc. Roy. Soc. London* (A) 88, 303-33 (1913); Harkins, Brown and Davies, THIS JOURNAL, 39, 354-64 (1917); and Harkins, Clark, and Roberts, *ibid.*, 42, 700-12 (1920).

2534

than an approximation. Moreover, they give no indication at all of the magnitude of the attraction between 2 liquids made up of molecules which are unlike. In studying the attraction between 2 dissimilar liquids use will be made of equations which are not only applicable to such a case but are also entirely accurate, since they are based upon thermodynamics alone. The first of these is the equation of Dupré,

$$W_A = -\Delta \gamma = \gamma_1 + \gamma_2 - \gamma_{1,2}$$

where γ_1 and γ_2 represent the free surface energies per square centimeter of the 2 liquids, $\gamma_{1,2}$, the free surface energy of their interface, and $-\Delta\gamma$ is the decrease of free energy when the surfaces of the two liquids come together to form an interface. The work done is represented by W_A which represents the amount of work done by the molecular attraction between the 2 surfaces. An equation which is more closely related to the molecular attraction is that derived in an earlier paper from this laboratory,

$$E_A = -\Delta E_s = (\gamma_1 + l_1) + (\gamma_2 + l_2) - (\gamma_{1,2} + l_{1,2}),$$

where l represents the latent heat of a surface, E_s the total surface energy, and $-\Delta E_s$ the total decrease in surface energy per square centimeter when the two surfaces come together. This equation may be put in the form

$$E_A = E_{s_1} + E_{s_2} - Es_{s_{1,2}} = \int_{s_0}^{\infty} F ds$$

or the integral of the molecular surface attraction is equal to the change in the total surface energy.

This paper will present data from which the adhesional *work* between organic liquids and mercury may be calculated, and the paper which follows will deal with the total adhesional *energy*. Both papers will give extensive data on the surface and interfacial tension and energy relations of mercury.

Experimental Procedure.

The surface and interfacial tension measurements were made in an apparatus somewhat similar to that used for work on surface tension by Morgan, but in the modified form designed by Harkins and Brown.¹ However, it was found necessary to allow the drop to hang from the inside instead of the outside edge of the capillary tip. The apparatus will be described in the second paper, but some mention will be made here of the experimental difficulties of the work, which are not inconsiderable.

The surface tension was in all cases calculated by the use of the correction curve determined experimentally by Harkins and Brown.²

¹ This Journal, **37**, 1656–76 (1915). ² Ibid., **41**, 499–524 (1919).

Surface Tension of Mercury in Air at 20°.

In order to illustrate the character of the results obtained by the method, the data obtained in air are given in Table I. A small constriction was made in the capillary of the tip such that with from one to 1.5 cm. head of mercury the natural period of fall per drop was 30 minutes. In order to shorten this time suction was applied for 0.5 minute, after which it took from 40 to 180 seconds for the drop to fall. The experiments (B), (C), (D), were made 2 months after Experiment A.

Tabi	LE ISURFACE	TENSION	OF MERCURY	IN AIR AT 20°
	Diam, tip cm,	Drop wt. G.	$f\left(\frac{r}{V^{\frac{1}{2}}}\right)$	Surface tension dynes.
A	. 0.12524	0.1345	0.7289	459.4
В	. 0.12524	0.1359	0.7290	464.3
C	. 0.1369	0.1475	0.7218	465.8
D,	. 0.1438	0.1519	0.7157	464.6

TABLE II.-SURFACE TENSION OF MERCURY IN WATER.

				C	orrected wt. drop.
A	0.12524	0.1179	0.7234	375.4	0.1092
B	0.12524	0.1176	0.7234	375.6	0.1091
C	0.14375	0.1317	0.7076	374.5	0.1221
			Average	= 374.8	

It will be noted that in spite of the fact that tips of different diameters were used, and that in both tables determinations were made 2 months apart, there is very good agreement between the results.

Table III gives similar results for other liquids. The ether which was used had been standing over sodium for several months, was then distilled off from fresh sodium, allowed to stand over mercury, distilled again, and stored over mercury. On long standing a black residue formed, similar to that formed when ordinary ether is placed over mercury. The ether was redistilled before using. A similar black residue formed in nitro-ethane on long standing in contact with mercury. The liquids used were carefully purified.

TABLE	IIISURFAC	e Tension	of Me	RCURY IN	Different	LIQUIDS	AT 20°,
	Density.	Diam. tip. cm.	Drop weight. G.	Corrected drop wt. G.	$f\left(\frac{r}{V^{\frac{1}{2}}}\right)$	Surface tension dynes.	
			In Ethyl	Alcohol.			
A	0.7893	0.12524	0,1120	0.1054	0.7214	364.6	
B	• • • • • • • •	0.14375	0.1255	0.1182	0.7049	364.0	364.3
			In Ethy	l Ether.			
A	0.7119	0.12524	0.1165	0.1104	0.7228	398.3	
			In Octyl	Alcohol.			
A	0.8252	0.12524	0.1083	0.1016	0.7197	351.7	
			In Nitro	-ethane.			
A	1.0528	0.14375	0.1338	0.1234	0.7084	378.2	• • • • •

TABLE III (continued).									
	Density.	Diam. tip, cm.	Drop weight. G.	Corrected drop wt. G.	$\left(\frac{v}{V^{\frac{1}{2}}}\right)$.	Surface tension dynes.			
			In Nitrob	enzene.					
A	1.185	0.14375	0.1240	0.1131	0.7005	350.5	• • • • •		
		I	n Carbon I	Disulfide.					
A	1.262	0.12524	0.10538	0.09555	0.7178	339.3	· · · · •		
		In	Carbon Te	trachloride.					
A	1.593	0.12524	0.1197	0.1054	0.7249	362.2			
			In Chloro	oform.					
A	1.485	0.12524	0.1163	0.1034	0.7233	356.6			
		In	Methylene	e Chloride.					
		After stand	ling over n	iercury for	4 weeks.				
A	1.337	0.14375	0.1225	0.1104	0.7035	340.7	• • • • •		
		In	Ethylidene	e Chloride.					
A	1.175	0.12524	0.1063	0.0971	0.7181	336.8			
		In	Ethylene]	Dibromide.					
A	2.178	0.12524	0.1124	0.0934	0.7205	326.0			
		In A	cetylene T	etrabromid	2.	,			
		Before b	being place	d over mere	cury.				
A	2.97	0.12524	0.1192	0.0931	0,7240	320.3			
	After standing over mercury for 4 weeks.								
B		0.14375	0.1229	0.0959	0,7038	293.3	• • • • •		
		In Methyl I	lodide disti	lled from si	lver foil.				
A	2.2786	0.12524	0.1051	o .0874	0.7176	304 . I			
After standing over mercury for 6 weeks.									
B		0.14375	0.1026	0.0854	0.6933	266.6	• • • •		
		Di	stilled from	Mercury.					
C		0.14375	0.1149	o.0956	0.7000	296.4	• • • • •		
		In Ethyl Io	odide distil	led from sil	ver foil.				
A	1.9375	0.12524	0.1089	0.0929	0.7192	321.7	• • • • •		
		After stan	iding over i	mercury fo	r 6 weeks.				
B		0.14375	0.1056	0.0905	0.6950	282.7			
		Di	istilled over	r mercury.					
C		0.14375	0.1180	0.1011	0.7103	312.9	· · · · ·		
			In Benz	zene.					
A	0.8784	0.12524	0.1092	0.1021	0.7197	353.2	• • • • •		
			In Hex	ane.					
A	0.6630	0.12524	0.1133	0.1077	0.7220	371.53			
			In Oct	ane.					
A	0.7022	0.12524	0.1092	0.1035	0.7201	357.9			

It will be noted that when the interfacial tension of mercury was determined in acetylene tetrabromide, methyl iodide, or ethyl iodide, which had been standing for some weeks over mercury, the values were in all cases considerably lower than those obtained before such a treatment. This seemed to be due to the fact that these liquids acted slowly on mercury forming halides, which dissolved to some extent in the organic liquid and was adsorbed by the mercury surface. Similar results were obtained with fresh liquids on adding a mercury halide.

The above tables are summarized in Table IV, which gives in addition the values for the adhesional work.

Table IV.—The Surface Tension of Mercury and its Interfacial Tension and Adhesional Work in Different Organic Liquids at 20° .(^a)

	Density.	Wt. Hg. in drop. G.	Tip.	f.	γ liquid,	γ interface.	W_A .
Air	· · · · · · ·	0.1359	I	0.7290		464.35	
Air		0.1475	2			465.8	
Air		0.1519	3		· · · · ·	464.6	
Hexane	0.6630	0.1092	I	0.7220	19.24	378.1	121.71
Octane	0.7022	0.1092	I	0.7201	21.52	374.6	131.0
Nitro-ethane	1 ,0528	0.1338	3	0.7084	32.52	378.2	139.2
Ethyl Alcohol	0.7893	0.1120	I	0.7214	21.7	364.38	142.3
Ethyl Alcohol	0.7893	0.1255	3	0.7049	21.7	354.00	142.7
Carbon Tetrachloride	1.593	0.1197	1	0.7247	26.95	362 .2	149.75
Chloroform	1.485	0.1163	I	0.7233	26.51	356.6	154.91
Benzene	0.8789	0.1092	I	0.7197	28.9	362.8	150.3
Octyl Alcohol	0.8252	0.1083	ĩ	0.7196	27.51	351.7	160.8
Methylene Chloride	1.337	0.1098	I	0.7199	26.52	340.7	170.82
Methylene Chloride	1.337	0.1225	5	0.7035	26.52	342.5	168.00
Ethylidene Chloride	1.175	0.1063	I	0.7181	25.71	336.8	173.91
Nitro Benzene	1.185	0.1240	3	0.7005	43.55	350.5	178.05
Carbon Disulfide	1.262	0 .1054	I	0.7220	34 - 49	339.3	180.19
Water	0. 9 982	0.1179	Í	0.7234	72.8	374.8	183.00
Water	0.9982	0.1317	3	0.7076	72.8	375.6	182.20
Ethyl Iodide	1.937	0.1089	I	0.7192	31.79	321.7	195.09
Ethyl Iodide	1.937	0 .1056	3	o .6950	31.79	282.7	234.09
Ethyl Iodide	1.937	0.1180	3	0.7013	31.79	312.9	204.89
Ethylene Bromide	2.178	0.1124	I	0.7205	37.89	326,00	196.89
Methyl Iodide	2.278	0.1051	I	0.7176	30.39	304.1	211.29
Methyl Iodide	2.278	0.1026	3	0.6933	30.39	266.6	248.79
Methyl Iodide	2.278	0.1149	3	0.7000	30.39	296.4	219.99
Acetylene Tetrabromide	2.97	0.1192	I	0.7240	48.21	320.3	212.91
Acetylene Tetrabromide	2.97	0.1229	3	0.7038	48.21	293.3	229.91
						-	

 $(^a)$ When several values are given for one liquid, Table III should be consulted for an explanation of the apparent discrepancy.

The above table represents the preliminary results obtained. A more complete table and a discussion of the results, will be found in the paper which follows.

CHICAGO, ILL.

2538